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This paper presents a robust and accurate way to solve steady-state linear transport (radi-
ative transfer) equations numerically. Our main objective is to address the inverse trans-
port problem, in which the optical parameters of a domain of interest are reconstructed
from measurements performed at the domain’s boundary. This inverse problem has impor-
tant applications in medical and geophysical imaging, and more generally in any field
involving high frequency waves or particles propagating in scattering environments. Stable
solutions of the inverse transport problem require that the singularities of the measure-
ment operator, which maps the optical parameters to the available measurements, be cap-
tured with sufficient accuracy. This in turn requires that the free propagation of particles be
calculated with care, which is a difficult problem on a Cartesian grid.

A standard discrete ordinates method is used for the direction of propagation of the par-
ticles. Our methodology to address spatial discretization is based on rotating the computa-
tional domain so that each direction of propagation is always aligned with one of the grid
axes. Rotations are performed in the Fourier domain to achieve spectral accuracy. The
numerical dispersion of the propagating particles is therefore minimal. As a result, the bal-
listic and single scattering components of the transport solution are calculated robustly
and accurately. Physical blurring effects, such as small angular diffusion, are also incorpo-
rated into the numerical tool. Forward and inverse calculations performed in a two-dimen-
sional setting exemplify the capabilities of the method. Although the methodology might
not be the fastest way to solve transport equations, its physical accuracy provides us with
a numerical tool to assess what can and cannot be reconstructed in inverse transport
theory.

� 2010 Elsevier Inc. All rights reserved.
1. Introduction

The radiative transfer (linear Boltzmann or linear transport) equation finds applications in several areas of applied sci-
ences such as e.g. nuclear reactors, atmospheric science and astrophysics, and medical imaging. The transport equation mod-
els the density of particles or the energy density of waves propagating in a scattering medium. In several of these
applications, the ultimate objective is to solve an inverse transport problem rather than a forward transport problem. The
inverse transport problem consists of reconstructing the constitutive parameters in the transport equation from available
(typically boundary) measurements. In this paper, we refer to the constitutive parameters as the optical parameters. The
operator mapping the optical parameters to the available measurements is called the measurement operator (or albedo
operator). Our objective is to develop a numerical tool that allows us to understand what can and cannot be reconstructed
from a given measurement operator and with what type of stability.
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1.1. Transport regime of propagation

Many numerical tools have been developed to solve the transport equation; see e.g. [1,22,18,24,25]. Most are tailored to
perform well in the regime of high scattering but do not necessarily adequately capture particle propagation in the regime of
interest in this paper. The transport of particles may roughly be characterized by three regimes: (i) the regime of free trans-
port (or ballistic regime), where particles do not interact with the underlying structure; (ii) the regime of moderate scatter-
ing (referred to as transport regime), where many but not all particles (statistically) interact with the underlying structure;
and (iii) the diffusive regime, where scattering is overwhelming. We are interested here in the intermediate transport re-
gime, where scattering cannot be neglected and in fact will be crucial for the inverse problem, but where a significant frac-
tion of the propagating particles do not interact with the scattering medium. Such a regime is characterized by a mixture of
singular behavior (particles with a given direction have a reasonable probability of keeping that direction until they exit the
domain) and smoothing behavior (the distribution of particles becomes smoother as scattering occurs).

1.2. Singularities of the albedo operator

Theoretical results on the inverse transport problem show that the most stable reconstructions of the optical parameters
require that the singularities of the measurement be captured accurately. This implies that the free transport of particles be
calculated accurately. This is where most existing transport codes will be inaccurate because of almost inevitable numerical
dispersion. Arguably no numerical method fails more miserably than the second-order diamond method [8] because high
frequencies are neither accurately estimated nor damped numerically. Higher-order methods will see a much improved
behavior though at the price of a significant unphysical (and typically uncontrolled) damping of high frequencies [26]. Non-
linear algorithms [17,23] or unstructured grids based on e.g. discontinuous Galerkin methods [19] might be used with their
own limitations. We do not follow that route here.

In the regime of free transport (no scattering), the transport equation becomes an ordinary differential equation for which
many accurate techniques are available. In the regime of fairly high scattering, as for instances in applications in nuclear
reactor physics and in medical imaging in highly scattering media, such inaccuracies are not necessarily too important be-
cause sources may be relatively smooth and even when sources are not smooth, multiple scattering is accurately computed
thanks to its regularizing effect.

In the intermediate regime of transport propagation, both the free propagation and scattering contributions need to be
estimated accurately. Moreover, small scale physical blurring effects may need to be modeled accurately so that the effects
of numerical dispersion need to be minimized as much as possible. Our methodology to do so is as follows.

1.3. Rotations

Because the transport solution is quite singular in the direction of propagation, the angular variable is best described by
using a discrete ordinates method, which replaces the sphere of directions of propagations by a finite number of directions.
The optical parameters are discretized by using a Cartesian grid, which is the natural pixel-by-pixel representation of pic-
tures. The spatial discretization of the transport equation is performed by rotating the domain so that each discrete direction
of propagation is aligned with one of the axes of the Cartesian grid. The rotation is performed in the Fourier domain by using
a fast Fourier transform in order to preserve spectral accuracy of the optical coefficient after rotation. The method is based on
the slant stack algorithm developed in [5,6] and used in [12] to solve the inverse attenuated Radon transform. This is the
most expensive step of the algorithm. For an Nd picture, where N is the number of pixels in each dimension and d is spatial
dimension, the calculation of the free transport solution, which after rotation requires that one solve an equation of the form
du
dx þ aðxÞu ¼ f , requires OðNdÞ calculations. The calculation of the rotation is proportional to Nd log N and therefore signifi-
cantly increases the computational cost of the method. However, the line integral of the coefficient aðxÞ is calculated quite
accurately independent of the direction of propagation, which is a necessary step toward obtaining an accurate numerical
solution of the inverse transport problem.

The above method allows us to solve the ballistic part of transport accurately. Multiple scattering is then calculated by
using a standard iterative source method, where scatterings of order mþ 1 are calculated iteratively from scatterings of or-
der less m by using the free transport solver described above. Because we are interested in the transport regime and not the
diffusive regime in this paper, the iterative source method converges relatively rapidly and does not require any acceleration
[2,20].

1.4. Physical blurring and ray effects

The methodology based on rotations is a convenient framework to add physical effects that are responsible for the blur-
ring of the ballistic part. One such physical blurring is that caused by small-angle diffusion. Such an effect is quite pro-
nounced in highly peaked forward scattering, which is significant in many applications in medical imaging and remote
sensing (imaging of the atmosphere). Such a blurring is considered by implementing angular and spatial diffusion in the
transverse variables to the main direction of propagation. Such effects are related to the Fermi pencil beam approximation
to the Fokker Planck equations that model angular diffusion. The numerical method presented here allows us to accurately
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capture such physical blurring effects, which are important to understand what can and cannot be reconstructed from avail-
able measurements.

A similar type of blurring may be used to combat the so-called ray effect. The ray effect is a numerical effect caused by the
finite number of directions used in the scheme. A physically localized source emitting smoothly in the angular variable will
emit radiation only along these privileged directions of propagation in the discrete scheme. It will thus generate radiation
along a finite number of lines with many pixels receiving no radiation at all. Such numerical solutions are accurate in a weak
sense (i.e., after averaging over a sufficiently large domain) but not point-wise. We show that the choice of an appropriate
diffusion coefficient allows one to mitigate the ray effect although this comes at a high computational price.

1.5. Numerical inversion

Once the forward transport solutions are simulated, they may be used to reconstruct the optical parameters from knowl-
edge of various measurement operators. We consider here the case of the full steady-state measurement operator, in which
the transport solution is measured at the domain’s boundary for all possible incoming radiation conditions. This measure-
ment operator is known to uniquely determine the optical parameters and to do so with a good stability estimate
[9,10,30,31]. We present an iterative algorithm that accurately reconstructs the optical parameters from the measurement
operator in the simplified setting of a two-dimensional geometry and isotropic scattering. The methodology is presented for
general, anisotropic, scattering coefficients and is independent of spatial dimension, although we demonstrate its effective-
ness only in dimension d ¼ 2 and with isotropic scattering in the section devoted to numerical simulations.

1.6. Outline

The rest of the paper is structured as follows. Section 2 recalls the basic ingredients about the forward and inverse trans-
port problems that we need in the sequel. The numerical method is presented in detail in Section 3. The influence of physical
blurring and of numerical blurring to address ray effects is covered in Section 4. Finally, Section 5 addresses the numerical
reconstructions of the optical parameters in a two-dimensional setting and shows the accuracy and robustness of the meth-
od. Some conclusions are offered in Section 6.

2. Theoretical setting

This section recalls the results we need in the sequel on the forward and inverse transport problem. The methodology
generalizes without serious complications to the case of particles propagating with different energies or wavenumbers.
To simplify the presentation, we assume for the rest of the paper that particles propagate with speed one so that the space
of velocities is the space of directions of propagation.

2.1. Forward transport equation

Let X be a convex bounded domain in Rd, where d is spatial dimension and d ¼ 2 or d ¼ 3 in practical applications. Let Sd�1

be the unit sphere in Rd. The transport equation we consider in this paper takes the form
v � rxuþ rðx; vÞu ¼
Z

Sd�1
kðx; v 0;vÞuðx; v 0Þdv 0; in X � Sd�1;

uðx;vÞ ¼ gðx; vÞ; on C�:
ð1Þ
Here, uðx;vÞ is the density of particle at x 2 X propagating with direction v 2 Sd�1. The sets of incoming conditions C� and
outgoing conditions Cþ are defined by
C� ¼ C�ðXÞ ¼ ðx;vÞ 2 @X � S
d�1; s:t: � v � mðxÞ > 0

n o
; ð2Þ
where mðxÞ is the outgoing normal vector to X at x 2 @X, the boundary of X. The source of incoming radiation gðx;vÞ is pre-
scribed on C�.

The interactions of the particles with the underlying medium are described by the optical parameters rðx;vÞ, the total
attenuation, and kðx;v 0;vÞ, the scattering coefficient, which measures the probability of scattering from direction v to direc-
tion v 0 at a point x. In practical settings, rðx;vÞ is the sum of the scattering contribution rpðx;vÞ ¼

R
Sd�1 kðx;v 0;vÞdv 0 and of

the intrinsic attenuation raðx;vÞ. When the intrinsic attenuation is non-negative, the above Eq. (1) admits a unique solution
in appropriate functional settings [9,15,16,27].

Moreover, the solution admits a convenient expression in terms of multiple scattering contributions. We define the times
of escape of free-moving particles from X as
s�ðx; vÞ ¼ inf s > 0jx� sv R Xf g; ð3Þ
and the operators
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Igðx; vÞ ¼ exp �
Z s�ðx;vÞ

0
rðx� sv; vÞds

� �
gðx� s�ðx;vÞv; vÞ; ð4Þ

Kuðx; vÞ ¼
Z s�ðx;vÞ

0
exp �

Z t

0
rðx� sv; vÞds

� �Z
Sd�1

kðx� tv ;v 0;vÞuðx� tv ;v 0Þdv 0 dt: ð5Þ
We verify that u0ðx;vÞ ¼ Igðx;vÞ, which is called the ballistic part, solves (1) when k � 0. We may then define unþ1 ¼ Kun

for n P 0 and obtain that
u ¼
X
nP0

un ¼
X
nP0

ðKÞnIgðx;vÞ ¼ ðI �KÞ�1Igðx; vÞ; ð6Þ
solves (1). The term unðx;vÞ is the component of uðx;vÞ that has scattered exactly n times (i.e., is a homogeneous polynomial
of degree n in the scattering coefficient k).

When the spectral radius qðKÞ of the operator K is not too large (i.e, bounded significantly away from 1), then the above
series expansion, which is called the source iteration method, converges rapidly as n!1. This is the case in the transport
regime of propagation we are interested in this paper, where intrinsic attenuation is not negligible and where the optical
depth of the domain of interest is not too large.

When qðKÞ is close to 1, which occurs in the diffusive regime, diffusion accelerations of the method become necessary
[2,20]. It should be relatively straightforward to accelerate the convergence of the source iteration method for the spatial
discretization we propose below or to use alternative preconditioners to the diffusion acceleration as in e.g. [18,25]. This
is not considered further here.
2.2. Albedo operator and inverse transport

The albedo or measurement operator is defined here as the operator mapping the incoming radiation to the transport
solution ujCþ restricted at the domain’s boundary: A : g # Ag ¼ ujCþ . The albedo operator A � A½r; k� depends on the optical
parameters and may then be seen as an operator mapping the unknown optical parameters to the measurements of interest,
which here are all possible couples ðg;ujCþ Þ on C� � Cþ.

The theory of the reconstruction of the optical parameters from knowledge of A is well developed. We refer the reader to
e.g. [9,10,15,30,31]. Stable reconstruction of the optical parameters is based on capturing the singularities in the albedo oper-
ator A as faithfully as possible. More precisely, we have that
Ag ¼ IgjCþ þ KIgjCþ þ K
2ðI �KÞ�1IgjjCþ :¼ A0g þA1g þA2g; ð7Þ
where A0g correspond to measurements of the ballistic part u0;A1g to measurements of the single scattering part u1, and
A2g to measurements of the multiple scattering. Of course, A0 and A1 are not directly measurable. They have to be extracted
from A and this is done by singularity analysis. In some sense, A0 is more singular than A1, which itself is more singular (in
dimension d P 3, and in a much weaker sense in dimension d ¼ 2) than A2. These singularities allow us to infer A0 and A1

from knowledge of A. Let us denote the kernels of Ak by ak, i.e.,
Akgðx; vÞ ¼
Z

C�

akðx;v ; y;v 0Þgðy; v 0ÞdlðyÞdv 0; ðx;vÞ 2 Cþ; ð8Þ
where dlðyÞ is the surface measure on the boundary @X. Then we find that [10,15]
a0ðx;v ; y;v 0Þ ¼ exp �
Z s�ðx;vÞ

0
rðx� sv; vÞds

� �
dvðv 0Þdfx�s�ðx;vÞvgðyÞ; ð9Þ
where dfxg is the delta function on the surface @X defined by
R
@X dfxgðyÞ/ðyÞdlðyÞ ¼ /ðxÞ for x 2 @X and / continuous on @X

and dv ðv 0Þ is defined similarly on S
d�1; and
a1ðx;v;y;v 0Þ ¼
Z s�ðx;vÞ

0
exp �

Z t

0
rðx� sv ;vÞds�

Z s�ðx�tv;v 0 Þ

0
rðx� tv � sv 0;v 0Þds

 !
kðx� tv;v 0;vÞdfx�tv�s�ðx�tv;v 0Þv 0gðyÞdt:

ð10Þ
In other words, a0 uniquely defines the line integral of r along the line of direction v passing through x. When r ¼ rðxÞ
independent of v, this information uniquely characterizes r by means of an inverse Radon transform [28]. Once rðxÞ is
known, then a1 uniquely characterizes kðx;v 0;vÞ. This is because when the lines fx� tv ; t 2 Rg and fyþ sv 0; s 2 Rg cross
and v – v 0, then x� tv ¼ yþ sv 0 ¼ s�ðx� tv ;v 0Þv 0 uniquely determines t in (10).

We thus observe that the singular components of A allow us to uniquely (and stably) reconstruct rðxÞ and kðx;v 0;vÞ.
Moreover the stability analyses in [10,15,30,31] show that A0 and A1 can indeed be extracted from knowledge of A in a sta-
ble manner. We refer the reader to the aforementioned literature and the topical review [9] for more information on this
technical topic.
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Note that ak in (9) and (10) is obtained by formally setting gðy;v 0Þ ¼ dfy0gðyÞdv0 ðv 0Þ in (8). In other words, the singular
structure of the albedo operator is obtained by solving (1) with singular boundary conditions on C� and measuring the sin-
gular structure of the solution u on Cþ. This is the main task for the numerical method that is presented below.

3. Numerical method

We now present in detail the numerical method that we use to solve (1). The source iteration method requires that we
solve problems of the form
Fig. 1.
measur
v � rxuþ rðxÞu ¼ f ðx;vÞ; in X � Sd�1;

uðx;vÞ ¼ gðx; vÞ; on C�;
ð11Þ
where the volume source term f ðx;vÞ takes for instance the form
f ðx;vÞ ¼ Kunðx; vÞ :¼
Z

Sd�1
kðx;v 0;vÞunðx; v 0Þdv 0; ð12Þ
in the calculation of unþ1ðx;vÞ. We assume here that r ¼ rðxÞ to simplify since this is the setting of interest for the inverse
problem.

The above problems are uncoupled in the variable v. Let some v be fixed. The main practical difficulty in solving (11)
numerically is that the optical coefficients, and hence the source term f ðx;vÞ, are defined on a grid, here a Cartesian grid,
independent of v. As we mentioned in the introduction, solving the hyperbolic problem (11) on a Cartesian grid is a challenge
in spite of the apparent simplicity of the (hyperbolic) equation. Our strategy is based on performing a rotation of the com-
putational domain so that the main direction of propagation becomes aligned with one of the grid axes.

3.1. Geometrical setting

The proposed method is essentially independent of spatial dimension. To simplify the presentation and because this is
what has been implemented so far, we restrict ourselves to the two-dimensional setting X ¼ Bð0;1Þ � R2, where Bð0;1Þ is
the centered ball of radius unity. The choice of X is such that the domain where r and k are supported is invariant by rotation.
The computational domain however is made v-dependent as follows. We now denote v ¼ vðhÞ ¼ ðcos h; sin hÞ 2 S1, where
h 2 ð0;2pÞ, and v? ¼ vðhÞ? is the (counterclockwise) rotation of v by 90 degrees, that is vðhÞ? ¼ ð� sin h; cos hÞ. For any func-
tion f ðvÞ defined on S1, we define the function f ðhÞ :¼ f ðvðhÞÞ on ð0;2pÞ and use the same symbol f for both functions.

For each h 2 ð0;2pÞ, we define the h� dependent square as
Ch ¼ x 2 R2 such that jx � v j < 1 and jx � v?j < 1
� �

: ð13Þ
The incoming and outgoing sets for such a domain are given by
C�;h ¼ x 2 @Ch such that x � v ¼ �1 and jx � v?j < 1
� �

: ð14Þ
See Fig. 1. This geometry is quite practical since it corresponds for each h 2 ð0;2pÞ to an array of sources emitting radiation
from the segment (square when d ¼ 3) C�;h and an array of detectors present also on the segment (square when d ¼ 3) Cþ;h.
−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

θ

Γ+,θ

Γ−,θ

X = B(0,1)

A square Ch . The arrows indicate how incoming boundary conditions on C�;h are mapped to the boundary of the unit disk and how outgoing
ements are measured on Cþ;h .
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Since scattering and attenuation vanish outside of X ¼ Bð0;1Þ, it is not difficult to map incoming and outgoing conditions
from C�ðXÞ as it was defined in (2) to incoming and outgoing conditions on C�;h as they are defined in (14).

Let us freeze h and define, for x ¼ ðx; yÞ 2 ½�1;1�2, and given functions u on R2 � ð0;2pÞ and w on R2,
uhðx;yÞ � ½u�hðx;yÞ :¼ uðx cos h� y sin h;x sin hþ y cos h; hÞ;
whðx; yÞ � ½w�hðx;yÞ ¼ wðx cos h� y sin h; x sin hþ y cos hÞ:
(We will use the bracket notation whenever u or w already have lower indices.) Note that uh and wh are the reparameter-
izations along the axes v and v? of ujCh

and wjCh
and that both are supported in X ¼ Bð0;1Þ. We now verify that (11) can

be rewritten as the following ordinary differential equation (ODE) for uh:
d
dx

uhðx;yÞ þ rhðx;yÞuhðx;yÞ ¼ fhðx; yÞ; ðx;yÞ 2 Ch;

uhð�1;yÞ ¼ ~ghðyÞ; on C�;h;
ð15Þ
where ~gh is obtained by projecting the input gð�; hÞ supported on the set fx; ðx; hÞ 2 C�g back onto C�;h. Formally, we have that

~gh ¼ g P�1
� ð�; hÞ

� �
, where we have defined the projection operators
P� : C� 3 ðx; hÞ# P�ðx; hÞ ¼ �vðhÞ � detðx;vðhÞÞvðhÞ? 2 C�;h: ð16Þ
When solving Eq. (15), the measurements we collect on Cþ;h are expressed as
uhjCþ;h ¼ ujCþ P�1
þ ð�; hÞ

� �
:

Eq. (15) is what we solve in practice: we first compute rh and fh by rotating the images of r and f ð�; hÞ clockwise by an
angle h, next solve (15) for uh on a Cartesian grid in (x,y), and finally rotate the image of uh (i.e., we compute ½uh��h) back to a
Cartesian grid aligned with the original frame ðex; eyÞ.

In order to simulate the albedo operator A, we thus need to solve problems of the form (11) with gðx; hÞ ¼ dðx� x0Þ for x0

an arbitrary point in C�;h and with f ðx; hÞ a source term of the form prescribed above, where unðx; hÞ is the solution after n
scattering iterations of the problem (1) (involving all directions of propagation) with a boundary condition on C�ðXÞ of
the form gðx; hÞ ¼ dfx0gðxÞdh0 ðhÞ.

3.2. Discrete ordinates and iterative source method

The numbers of directions of propagation Nd in (11) needs to be finite in practice. The directions are chosen uniformly
distributed on the unit circle. This is the standard discrete ordinates method to solve (1). Once the number of directions
is chosen, the integral on the right-hand side in (1) also needs to be discretized.

To this end, we define the angular step-size d :¼ 2p
Nd

, as well as the sets Hd ¼ fh1; . . . ; hNd
g and S

1
d ¼ fv1; . . . ;vNd

g, where
for each i ¼ 1; . . . ;Nd; hi ¼ i� 1

2

� 	
d and v i ¼ ðcos hi; sin hiÞ. For a function f defined on X �Hd, we define on X �Hd the

function
Kdf ðx; hiÞ ¼ d
XNd

j¼1

f ðx; hjÞkðx; hj; hiÞ; x 2 X; i ¼ 1; . . . ;Nd: ð17Þ
With the new notation and operators, the semi-discretized problem in order to compute the nth scattering term reads
v � rxunðx; hÞ þ rðxÞunðx; hÞ ¼ Kdun�1ðx; hÞ; in X �Hd;

unðx; hiÞ ¼ gðx; hiÞ; on C�;hi
; i ¼ 1; . . . ;Nd;

ð18Þ
where, by convention for n ¼ 0; Kdu�1 ¼ 0. In our geometrical setting, we rewrite the system of equations (18) as
follows:
d
dx
½un�hi

þ rhi
½un�hi

¼ ½Kdun�1�hi
; on Chi

; i ¼ 1; . . . ;Nd;

½un�hi
ð�1; yÞ ¼ ~ghi

ðyÞ; on C�;hi
; i ¼ 1; . . . ;Nd:

ð19Þ
Let us denote by Nscat the number of scattering terms we want to solve for numerically (this can be replaced by a criterion
stopping the calculation whenever a given accuracy is attained by the iterative scheme). A schematic presentation of the for-
ward transport code when scattering is isotropic is given by Algorithm 1.
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Algorithm 1. Forward transport solver (case of isotropic scattering).
1:
 Prescribe boundary conditions and optical parameters ~ghi

� �Nd

i¼1;r; k;

2:
 {Computation of the ballistic part}

3:
 for i ¼ 1 to Nd do

4:
 compute rhi by rotation;

5:
 solve for ½u0�hi

the equation
d
dx
½u0�hi

þ rhi
½u0�hi

¼ 0; on Chi
;

½u0�hi
jC�;hi

¼ ~ghi
; on C�;hi

;

6:
 compute ½½u0�hi
��hi

by rotation as an approximation of u0ð�; hiÞ;

7:
 end for

8:
 {Computation of the scattering terms}

9:
 for n ¼ 1 to Nscat do
10:
 compute the source term fn :¼ Kdun�1;

11:
 for i ¼ 1 to Nd do

12:
 compute rhi and ½fn�hi

by rotation;

13:
 solve for ½un�hi

the equation
d
dx
½un�hi

þ rhi
½un�hi

¼ ½fn�hi
; on Chi

;

½un�hi
jC�;hi

¼ ~ghi
; on C�;hi

;

14:
 compute ½½un�hi
��hi

by rotation as an approximation of unð�; hiÞ;

15:
 end for

16:
 end for
This algorithm requires image rotations and solutions of ordinary differential equations. We now describe how these
operations are performed.
3.3. Rotation of the computational domain and ODE solver

The salient feature of the paper is the way we solve the free transport Eq. (11) by using rotations. We rewrite it as (15),
where the computation of rh and fh requires the computational domain to be rotated in such a way that the v-axis becomes
one of the axes �ex or �ey of the Cartesian grid. We then solve the ODE on this grid and rotate the computed solution back to
the initial grid. Hence the two elementary functions are the image rotation and the ODE solver on a Cartesian grid, which we
now describe in detail.

The square ½�1;1�2 is discretized into n� n equispaced points of coordinates
x	 y ¼ fðxðiÞ;yðjÞÞgn
i;j¼1; where xðjÞ ¼ yðjÞ ¼ �1þ 1

n
þ ðj� 1Þ2

n
: ð20Þ
This grid is centered at 0, and rotations are performed to keep 0 invariant.

3.3.1. Image rotation
We now want to rotate an n-by-n image by an angle h. The image represents the values of a mapping over the grid x	 y

defined in (20). The mapping is further assumed to be supported in X. The main idea is to realize a rotation by means of im-
age shearing (slanting) and dilation, successively along the columns and rows of the image. Each operation is performed in
the Fourier domain using a fast Fourier transform to preserve spectral accuracy.

We describe the rotation technique for h 2 0; p4

 �

. For other values of h, we use rotations by p
2 and reflections about the axis

ey (which are simple re-indexing exercises) to bring h into the interval 0; p4

 �

. We decompose the rotation function
rh : R2 ! R2 defined by
rh : ðx; yÞ# rhðx;yÞ ¼ ðx cos hþ y sin h;�x sin hþ y cos hÞ; ð21Þ
as a product of four Cartesian-friendly operations. This decomposition can be achieved by the following composition of ele-
mentary functions:
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rh ¼ dx; 1
cos h

 sx;� sin h 
 dy;cos h 
 sy;tan h; where for ðx;yÞ 2 R2;

sy;aðx;yÞ ¼ ðx;y� axÞ; a 2 R; sx;bðx;yÞ ¼ ðx� by;yÞ; b 2 R;

dx;tðx;yÞ ¼ ðtx; yÞ; t 2 R; dy;tðx; yÞ ¼ ðx; tyÞ; t 2 R: ð22Þ
The s operators are slant (shearing) operators, where the first index indicates the axis that is parallel to shearing and the
second gives the rate of shearing: sy;tan h aligns the axis ð0;vðhÞÞ with the axis ð0; exÞ. This slant induces a vertical stretching
that is compensated by the vertical homothecy dy;cos h. Then the horizontal shearing sx;� sin h aligns the axis ð0;vðhÞ?Þ with
ð0; eyÞ, inducing a horizontal stretching that is compensated by the horizontal homothecy dx;� sin h. Numerically, the shearing
uses the ’slanting’ technique, in which we embed the image in a bigger image and slant it. The homothecy (dilation) is
achieved by a resampling done in the Fourier domain with spectral accuracy of the sheared image, which brings it back
to its original size. Fig. 2 illustrates how these steps are combined to execute an image rotation. These two steps are now
spelled out in detail.

3.3.2. Vertical shearing
We now explain how to shear, or ’slant’ an image vertically. Horizontal shearing is performed similarly. The idea behind

vertical slant is to shift each column of the image independently with a shift that increases linearly with the column index at
rate �t. This produces a globally sheared image, in which lines with slope t become horizontal.

In order to avoid that the upper-left and lower-right corners of the image share a common row in the sheared image, we
embed the n-by-n image into a 2n-by-n image prior to shearing. We do this by adding n

2� n arrays of zeros above and below
the image, which allows for shearing of angles h 6 p

4. This non-overlapping condition is important in order to perform the
shearing in the Fourier domain after periodization of the image.

The operation of shifting a vector x ¼ ½x1; . . . ; xn�T by a shift s is done as follows. We first define the 2n-periodic function
DnðyÞ ¼
sinðpyÞ

n sin py
n

� 	 ; y 2 R; ð23Þ
1: initial image, max = 1.7
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5: horizontal resampling, max = 1.8741
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6: rotated image, max = 1.8741
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The steps involved in an image rotation by h ¼ p
6. We use the Shepp–Logan phantom with a cross superimposed at its center to indicate which axis is

ened during each of the shearing steps. By looking at maximum values of the pixels, we observe that the spectral rotations create overshoots and
ions near discontinuities as a standard manifestation of the Gibb’s phenomenon.
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and assume that x represents the values of a mapping on a grid y1; . . . ; yn of step-size 1. Now we define the n-periodic con-
tinuous interpolant of x as ~xðyÞ ¼

Pn
i¼1xjDnðy� jÞ, and the resulting shifted vector is defined as
xs ¼ ½~xð1þ sÞ; . . . ; ~xðnþ sÞ�T :
Numerically, the operation of spectral shifting consists of a convolution of the initial vector x with fDnðjþ sÞgn
j¼1. This can be

done in Oðn log nÞ operations using the Fast Fourier Transform (FFT) algorithm. We recall the N-point Discrete Fourier Trans-
form (DFT) and its inverse (IDFT) are defined as:
XðkÞ ¼ FN
j # k½xðjÞ� ¼

XN

j¼1

xðjÞe�2ip
N ðj�1Þðk�1Þ; k ¼ 1; . . . ;N;

xðjÞ ¼ F�1;N
k # j½XðkÞ� ¼

1
N

XN

k¼1

XðkÞe2ip
N ðj�1Þðk�1Þ; j ¼ 1; . . . ;N:

ð24Þ
Because of the vertical zero-padding mentioned earlier, we now assume that N ¼ 2n and that our vectors represent N-peri-
odic functions on a grid y1; . . . ; yN of step-size 1. The shift s is scaled on the interval ½0;N�, and we will make use of the fol-
lowing interpolating function
D2nðtÞ ¼
sinðptÞ
2n sin pt

2n

¼ 1
2n

Xn�1

k¼�n

eipn kþ1
2ð Þt ; t 2 ½0;2n�:
Now the spectral interpolant of x is given by ~xðyÞ ¼
P2n

j¼1xðjÞD2nðy� jÞ, and looking at the function x1ðyÞ ¼ ~xðy� sÞ on the ini-
tial grid, expanding D2n as a sum of complex exponentials and using the definition (24), we obtain after some algebra:
x1ðylÞ ¼ eipn �nþ1
2ð Þðl�1ÞF�1;2n

k # l e�ipn k�1�nþ1
2ð ÞsF2n

j # k xðjÞe�ipn �nþ1
2ð Þðj�1Þ

h ih i
; l ¼ 1; . . . ;2n: ð25Þ
Using the N ¼ 2n variable, Eq. (25) reads:
x1ðylÞ ¼ eipNð�Nþ1Þðl�1ÞF�1;N
k # l e�ipNð2k�2�Nþ1ÞsFN

j # k xðjÞe�ipNð�Nþ1Þðj�1Þ
 �h i
; l ¼ 1; . . . ;N: ð26Þ
This is how we have implemented the shift function with the FFT and IFFT functions.

3.3.3. Resampling
Now we want to resample each column with a different step-size in order to compensate for the stretching effect induced

by the image shearing and bring the image back to its original size. In order to do that, we work again with the spectral inter-
polating function D2n and pick values of the interpolated columns at new gridpoints. In our case, we want to resample a vec-
tor x of size N ¼ 2n down to a vector x1 of size n with a different step-size. Assume that the vector x takes values at the
gridpoints fj� 1g2n

j¼1 and the vector x1 takes values at yl ¼ sþ hðl� 1Þ; l ¼ 1; . . . ;n, with h 6 1 and s fixed. The interpolant
of x is, again, defined with the function D2n, and a similar calculation to (26) gives
x1ðylÞ ¼
1
N

eipNð�Nþ1Þhðl�1ÞG
N;�h

N
k # l eipNð2k�N�2þ1ÞsFN

j # k xðjÞe�ipNð�Nþ1Þðj�1Þ
 �h i
; ð27Þ
where the operator GN;a is a N-point fractional Fourier transform of coefficient a (see [7]):
XðlÞ ¼ GN;a
k # l½x� ¼

XN

k¼1

xðkÞe�i2paðk�1Þðl�1Þ: ð28Þ
In order to compute this transform withOðn log nÞ complexity, we implemented the ‘‘chirp z-transform” technique described
in [7]. This technique allows us to express (28) as a 2N-point circular convolution, which can then be computed with FFT’s
and IFFT’s, hence with a complexity of order OðN log NÞ.

3.3.4. Complexity
As we have seen, the image rotation function is a succession of FFT’s, IFFT’s and fractional Fourier transforms of compu-

tational complexity Oð2n logð2nÞÞ and component-wise multiplications of computational complexity Oð2nÞ, applied for each
column or each row (i.e., n times). Hence for an n-by-n image, the overall computational cost is of order Oðn2 log nÞ.

3.3.5. ODE solver
Every time we rotate images into the appropriate grid, we then need to solve an ODE on this grid. Our equations have the

form
@u
@x
ðx; yÞ þ aðx;yÞuðx;yÞ ¼ f ðx;yÞ; ð29Þ
and need to be solved on the grid x	 y defined in (20), with initial conditions set on the side {x=-1}. In order to solve this
ODE, we use a finite difference scheme, marching along the columns from the incoming boundary {x=-1} to the outgoing
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boundary {x=1}. We have restricted ourselves to the simplest of schemes here, namely the Explicit Euler scheme. We have
done so here to demonstrate that capturing the location of singularities (here, delta functions in angle and space) is more
important than capturing their amplitude with high accuracy. Higher-order schemes (e.g. Adams–Bashforth method) may
obviously be considered as well and would be easily implementable in the context of the method presented here.

3.3.6. A note on resampling
Note that the slant sy;tan h in the rotation in (22) maps the line with slope h onto the x-axis and thus also maps (11) to an ODE

of the form (29). The above ODE is therefore not affected by the other steps involved in the rotation as in the references
[5,6,12]. If we were only interested in solving the above ODE and the radiative transfer Eq. (1), then the slanting step alone
would be sufficient. Though still of complexity Oðn2 log nÞ, the computational cost would be significantly reduced by not per-
forming the second slant and the two homothecies. We will see below that the full rotation allows for a simple accounting of
noise effects such as the highly peaked forward scattering effect, which is difficult to handle by only shearing the images. The
ray effect treated below is also more easily handled after full rotation of the computational domain. This is the reason why we
have presented the setting with full rotations. Again, only one slant sy;tan h is sufficient to solve (11), and hence (1), by a Carte-
sian-friendly method. The treatment of the incoming boundary conditions, however, needs to be addressed with some care
and slightly differently from what we are doing here in the framework of full rotations. We do not consider this difficulty here.

3.4. Computational results for ballistic and single scattering parts

As advertised earlier, the main advantage of the method developed in this paper is that it allows us to estimate the sin-
gularities of the transport solution with reasonable accuracy. In order to find the limitations of the method, it is worth look-
ing at how such a singularity is shifted by the spectral method during rotation. Like any Fourier-based method, this method
conserves the high frequency content of the initial singularity and we thus expect some oscillations on the resulting image.
Let s be the value of the shift and h the step-size of the grid. A good indicator is how well the method does versus the quantity
modðs;hÞ (s modulo h). See Fig. 3.

3.4.1. Effects of spectral shifts and slants
When modðs;hÞ ¼ 0, the singularity is shifted by an integer number of grid points and is thus exact. In every other case,

shifting a singularity to a location between two gridpoints (the case modðs;hÞ – 0) creates oscillations of period 2h and delo-
calizes the singularity. This is because in the discrete world, a Dirac is replaced by the function Dn defined in (23) on a grid
that coincides with the zeroes of Dn. When the grid is shifted and no longer coincides with these zeroes, we observe oscil-
lations. The amplitude of the oscillations increases as the shift moves away from a gridpoint and this amplitude is maximal at
the middle of two gridpoints i:e:; modðs;hÞ ¼ h

2

� 	
. There, the intensity of the peak drops by 36% and the peak is essentially

spread over two pixels.
Now we have seen that slanting an image requires shifting each column with a shift that increases linearly with the col-

umn index. It is interesting to mention that if this rate of increase is rational t ¼ p
q, then the shift is periodically exact every q

columns and spreads out transversally in-between (see Fig. 4, left). If t is irrational, then the shifted column is never exact
and oscillations ’spread’ along the transverse direction.

Fig. 4 shows the effects of slanting images of ballistic parts computed by the forward solver, as we send a Dirac pulse or a
Gaussian beam through the domain. Sending these inputs through the domain creates a line of variable width that will be
rotated later on in order to compute the single scattering term. The Dirac case is seen on the left image, which shows oscil-
lations that create ghost sources when the multiple scattering contributions to the transport solution are computed. Sending
even quite narrow Gaussian beams instead of delta pulses suppresses most of the oscillations (see middle plot of Fig. 4). De-
spite the resulting slight loss in resolution, the information that travels across the domain is quite well localized, which al-
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Fig. 3. Spectral numerical shifts of the Dirac function (right: close up). The amplitude of the oscillations is maximal when the singularity is shifted to the
middle of two gridpoints.
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. Left: ray coming from a Dirac pulse, where we observe the periodicity of the transversal spreading pattern.

Middle: Gaussian beam of width 1.5h, where oscillations are essentially suppressed. Right: vertical cross section at ‘x ¼ 0’ of the slanted images of a Dirac
pulse and a few Gaussian beams with variable width.
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lows for an accurate computation of the singularities in the transport solution. As one can see from Fig. 4 (right), the beams
become quite smooth when r � 1:5h, which roughly corresponds to encoding a singularity over two-to-three grid points.
3.4.2. Effects of rotations
In the transport code, a rotation by h requires a vertical slant with rate tan h, followed by a horizontal slant with rate sin h.

For the uniform ordinate discretization we chose, these rates are usually irrational.
The rotation of a line typically first creates vertical oscillations after vertical slant. These vertical oscillations are then

slanted horizontally, which creates new horizontal oscillations. The resulting image displays oscillations along two direc-
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Fig. 5. Effects of rotations on singularities. Left: effect of a rotation h ¼ p
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on a singular image. We observe oscillations along two directions and a peak of

weaker intensity. Right: same with a narrow Gaussian spot of width 1.5h, where h is the spatial grid size. Oscillations almost disappear in that case.
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Fig. 6. Ballistic and single scattering contributions with different regularity of the incoming conditions. We send rays of increasing width on images (a), (b),
(c), and look at the impact of the width on the re-emitted energy and the outgoing measurements (plots (d)) in direction p

3. The scattering map may be seen
in Fig. 7, image (h). See text for more details.
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tions (see Fig. 5, second from left). As we refine the grid, the amplitude of the oscillations does not change relative to the peak
(this is the Gibb’s effect) although their support decreases.

The rotation becomes much more accurate when the singularity is regularized. As we can see in Fig. 5 (second half), the
oscillations disappear rather quickly as we approximate a point singularity with a narrow Gaussian spot. The finer the
grid, the narrower is the Gaussian spot that prevents oscillations. Gaussian spots with width between 1 and 1.5 grid
points, thus resulting in a loss of resolution comparable to 2–3 grid points, are sufficient to prevent spurious oscillations
in practice.

Fig. 6 shows the effect of widening incoming Gaussian beams on the superposition of the ballistic part corresponding to
the incoming direction hin ¼ 0 and single scattering propagating in direction hout ¼ p

3. Single scattering has been rescaled for
better contrast. Images (a), (b) and (c) correspond to Gaussian beams with widths given by 0;1:5h, and 5h, respectively (thus
image (a) corresponds to a Dirac input). Wide Gaussian beams may be useful numerically, but can also be used to model
sources with limited spatial resolution. Sub-plot (d) shows the outgoing measurements on Cþ;hout for the previous three cal-
culations. We observe that the wider the beam, the bigger is the support of the information that is re-emitted after scattering
and thus the weaker is the resolution capabilities of the measured signals. At the same time, singular (Dirac) incoming con-
ditions create singular sources in the single scattering calculations, which generates spurious oscillations as the singular
source is rotated. Such oscillations are apparent on images (a) and (d).

4. Physical and controlled numerical blurring

4.1. Fokker Planck and Fermi pencil beam approximations

The numerical method presented above allows us to precisely capture the singularities of the albedo operator. In many
practical settings, these singularities are substantially modified by some noisy physical effects. One such effect is the angular
diffusion caused by peaked forward scattering. We refer the reader to [21] (see also [9]) for the derivation of Fokker Planck
equations that model angular diffusion. We take here a slightly different route to obtain a model with angular diffusion. To
simplify, we assume that d ¼ 2 although the results (as in the rest of the paper) easily generalize to d P 3.

Let v i a discrete ordinate and v?i its rotation by 90 degrees. Let Ci � ð0;2pÞ the interval of measure d centered at hi. Then
we have
v i � rxuþ riðxÞu ¼
Z
ð0;2pÞnCi

kðx; h0; hiÞuðt; x; h0Þdh0 þ
Z

Ci

kðx; h0; hiÞðuðt; x; h0Þ � uðt; x; hiÞÞdh0: ð30Þ
Here, riðxÞ ¼ rðxÞ �
R

Ci
kðx; h0; hÞdh0, which we assume depends only on x. The first term on the right-hand side above is dis-

cretized as before. The second term, however, is approximated by a Taylor expansion
uðt; x; h0Þ ¼ uðt; x; hÞ þ ðh0 � hÞ@huðt; x; hÞ þ 1
2
ðh0 � hÞ2@2

huðt; x; hÞ þ l:o:t:
Assuming that kðx; h0; hiÞ is symmetric in h0 about hi, we find that
R

Ci
kðx; h0; hiÞðh0 � hiÞdh0 ¼ 0. Thus, we observe that
Z

Ci

kðx; h0; hiÞðuðt; x; h0Þ � uðt; x; hiÞÞdh0 ¼ dðxÞ@2
huðt; x; hiÞ þ l:o:t:;
where the effective angular diffusion coefficient is given by dðxÞ ¼
R

Ci
kðx; h0; hiÞ 1

2 ðh
0 � hiÞ2dh0. When kðh; h0Þ is large for h� h0

close to 0, as it is the case for highly peaked forward scattering, the above coefficient dðxÞ is non-negligible. Then (1) should
be replaced, in all dimension d P 2, by
v � rxuþ rðx; vÞu ¼ dðxÞDvuðx; vÞ þ
Z

Sd�1
kðx;v 0; vÞuðx;v 0Þdv 0; in X � Sd�1;

uðx; hÞ ¼ gðx; hÞ; on C�;
ð31Þ
where r and k have been renormalized to account for the loss of the integral over Ci in the scattering coefficient and where
Dv represents the Laplace Beltrami operator on the sphere, which generalizes @2

h to arbitrary dimension d P 2.
In the setting of the source iteration method presented earlier, we thus want to solve problems of the form
v � rxuþ rðxÞu ¼ dðxÞDvuðx; vÞ þ f ðx;vÞ; in X � S
d�1;

uðx;vÞ ¼ gðx; vÞ; on C�:
ð32Þ
Here again, we assume that r ¼ rðxÞ. The above equation generalizes (11).
When dðxÞ is small, the above diffusion term does not significantly modify the direction of propagation. It is therefore

possible to approximate the angular diffusion by a diffusion in the transverse angular variables only. When d ¼ 2, this means
a diffusion in the transverse variable vðhÞ? only. More precisely, let us assume that the main direction of propagation v0 ¼ ex

(for instance after rotation in the numerical setting). When d ¼ 0, the direction of propagation is fixed and equal to h0. When
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d > 0, angular diffusion causes h to change. However, when d is small, the angular diffusion remains small when the particles
exit the domain on Cþ. This allows us to formally replace the angle of propagation ðcos h; sin hÞ by ð1; hÞ as a first approxi-
mation. Then, the angular diffusion becomes the tangential diffusion @2

h so that a good approximation of (32) when dðxÞ is
small is the following Fermi pencil beam (FPB) approximation
@u
@x
þ h

@u
@y
þ rðx; yÞu ¼ dðx; yÞ @

2u

@h2 þ f ðx; y; hÞ;

uð0; y; hÞ ¼ dðyÞdðhÞ:
ð33Þ
We recall that x ¼ ðx; yÞ. The boundary conditions become initial conditions at x = 0, say. We are interested in singular
incoming conditions so that y = 0 and h ¼ 0 at x = 0. Because d is small, variations in h are small so that variations in y
are also small. As a result, rðx; yÞ; dðx; yÞ and f ðx; y; hÞmay be replaced, up to an order of accuracy comparable to the differ-
ence between the solutions (32) and (33), by rðx; 0Þ; dðx;0Þ and f ðx;0; hÞ. We are thus interested in the evolution equation
(in the x variable)
@u
@x
þ h

@u
@y
þ rðxÞu ¼ dðxÞ @

2u

@h2 þ f ðx; hÞ;

uð0; y; hÞ ¼ dðyÞdðhÞ;
ð34Þ
where the dependence of r; d, and f in y has been neglected.
When f ¼ 0, the above equation admits an explicit expression:
uðx;y; hÞ ¼ e�
R x

0
rðtÞ dt 1

2p
ffiffiffiffiffiffiffiffiffiffi
CðxÞ

p exp � 1
CðxÞ D0ðxÞðy� xhÞ2 þ 2D1ðxÞðy� hxÞhþ D2ðxÞh2

h i� �
;

where DiðxÞ ¼
Z x

0
tidðtÞdt; i ¼ 0;1;2; CðxÞ ¼ D0ðxÞD2ðxÞ � D2

1ðxÞ:
ð35Þ
This explicit expression allows us to replace the angular diffusion coupled with the spatial drift by a spatial diffusion in
the y variable with a x-dependent diffusion coefficient. Averaging over the angular variable in (35), we obtain after some
algebra that
Uðx; yÞ :¼
Z

R

uðx; y; hÞdh ¼ e�
R x

0
rðtÞ dt 1

wðxÞ
ffiffiffiffiffiffiffi
2p
p e

� y2

2w2 ðxÞ; ð36Þ
where w2ðxÞ ¼ 2 D2ðxÞ � 2xD1ðxÞ þ x2D0ðxÞ
� 	

. Then we can show that Uðx; yÞ satisfies the parabolic equation
@U
@x
þ rðxÞU ¼ dFPBðxÞ

@2U
@y2 ;

Uð0;yÞ ¼ dðyÞ;
ð37Þ
where the diffusion coefficient has the following expression
dFPBðxÞ ¼
d

dx
wðxÞ2

2

 !
¼ 2

Z x

0
ðx� tÞdðtÞdt: ð38Þ
Eq. (37) is the equation we solve numerically. This equation allows us to incorporate the physical effect caused by small
angular diffusion. Note that when dðtÞ ¼ d is constant, then wðxÞ is proportional to x

3
2. This shows that Uðx; yÞ is then a func-

tion of y

x
3
2
. Diffusion in the FPB model increases super-linearly in the x variable.

4.2. Blurred ballistic and single scattering components

We now consider the effect of blurring by angular diffusion on the transport solutions. We consider two types of blurring,
the Fermi pencil beam (FPB) blurring presented in the preceding section and the linear diffusion (LD) blurring, which is also
of the form (37) though with a different form for the diffusion coefficient than (38). The latter diffusion will be described in
detail in the next section. Our numerical results correspond as in Fig. 6 to an incoming direction hin ¼ 0 and single scattering
propagating in direction hout ¼ p

3.
The numerical results are gathered in Fig. 7. Images (a), (b) and (c) show the ballistic parts passing through the domain in

the case of no blurring (a), FPB blurring (b), and LD blurring (c). The scattering map given in Image (h) is also represented in
the background of Images (a)–(c). The source term Ku0ðxÞ generated as in (12) for the construction of the single scattering
contribution is presented in images (e), (f), and (g) after rotation by an angle p

3 for the three cases of images (a), (b), and (c),
respectively. Note that single scattering is much more diffuse in the presence of angular or linear diffusion away from the
location of the incoming source term (point with coordinates (33,1) in images (a)–(c) and coordinates about (22,14) in
images (e), (f), and (g) after rotation). Close to that location, the single scattering term displays some oscillations caused
by the rotation as for the results presented in Fig. 6. The superposition of the ballistic and single scattering (rescaled for bet-
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ter contrast) in the three scenarios is presented in Images (i), (j), and (k), respectively. Unlike the situation encountered in
Fig. 6, the ballistic and single scattering terms are seen to become smoother as the distance to the location of the incoming
source term increases. Such smoothing is very damaging for the inverse problem since the blurred small scale structures are
essentially lost in the measurements. A cross section of the single scattering measurements on top of the domain X is shown
in Image (l).
4.3. Blurring and ray effects

As we mentioned in the introduction, one of the drawbacks of the discrete ordinates method is the so-called ray effect;
see Fig. 8. Angular diffusion, giving rise to spatial diffusion, may ray effect. With a diffusion coefficient that depends on the
distance to the localized source term, we can construct a solution that is very close to the exact ballistic part.

The diffusion coefficient is derived so that the spatial density of the ballistic part best approximates that of the solution of
the continuous problem. Let us consider the free transport equation in X with a point source at 0 and zero incoming bound-
ary condition:
v � rxu ¼ dðxÞuðhÞ; x 2 X; h 2 S1; ujC� ¼ 0: ð39Þ
Then the spatial density U of the solution u is given by:
UðxÞ ¼
Z

S1
uðx; hÞdh ¼ 1

jxjuðhÞ: ð40Þ
This has to be compared with the spatial density of the solution, which solves the same problem in discrete ordinates,
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v i � rxu ¼ dðxÞuðhiÞ; x 2 X; i ¼ 1; . . . ;Nd; ujC� ¼ 0: ð41Þ
The approximate spatial density is supported on Nd rays emanating from the point source position and has the expression
eUðxÞ ¼XNd

i¼1

uðhiÞd hi �
x
jxj

� �
; x – 0: ð42Þ
See Fig. 8, where we used the phase function
uðhÞ ¼ 1� g2

ð1þ g2 � 2g cos hÞ
3
2
; with g ¼ 0:5; ð43Þ
which is referred to as the Henyey–Greenstein phase function with anisotropy coefficient g ¼ 0:5.
This effect induced by the angular discretization is called the ray effect, and in order to reduce it, we need to spread the

rays over the gaps between discrete rays. Since each ray is computed by solving an ODE along the direction of the ray, we can
use diffusion to spread each ray transversally. Looking at the spatial densities on concentric circles centered at 0 with
increasing radii, the graph of uðhÞ is stretched linearly and decreases like 1

jxj whereas the discretized solution is a Dirac comb.
By adding transverse diffusion, we approximately convolve this Dirac comb with a Gaussian function (the Green’s function
for the diffusion equation). When the variance of the Gaussian function is chosen appropriately and u is a smooth function,
then the numerical density is quite close to the exact solution. On a circle of radius R, the comb’s step-size is Rr; r ¼ 2p

Nd
.

Then, for each direction hi, we replace a delta pulse by a normalized Gaussian beam, the width of which increases linearly
with the distance to the source point. For a direction hi, we want the expression
uðx; hiÞ ¼
uðhiÞ

r
ffiffiffiffiffiffiffi
2p
p

jx � v ij
exp �

x � v?i
� 	2

2r2ðx � v iÞ2

 !
; x � v i > 0: ð44Þ
This function can be generated by solving the parabolic equation (on the half-domain X \ fx � v i > 0g)
σ = δ/4
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v i � rxu ¼ r2ðx � v iÞ v?i � rx
� 	2f ; x � v i > 0;

ujfx�v i¼0g ¼ uðhiÞd0:
ð45Þ
Fig. 9 shows the numerical superposition of these beams for a few values of r.
We have implemented the simulation of the diffusion terms in (37) and (45) by modifying the ODE method described in

Section 3.3 and replacing it by the solution of standard parabolic equations. Our implementation is a standard Euler explicit
method (second-order in the spatial variable y, first-order in the ‘‘time” variable x). In the variables of the rotating frame, this
amounts to adding the three-point discretization of the term dðxÞ @2u

@y2 in (29). We verify that the CFL condition for such a
scheme is
dðxÞ 6 Dy2

2Dx
: ð46Þ
In this paper, we are interested in small diffusion coefficients acting as uncontrolled noise. In our simulations, the diffusion
coefficient d was always chosen sufficiently small that the above CFL condition would be satisfied with Dy ¼ Dx. In the dif-

fusion model (45) that addresses the ray effect, we find that d ¼ 2p
Nd

� �2
L, where L is the distance to the source, and for diffu-

sion coming from the Fermi-Pencil-Beam approximation (37), we obtain that d ¼ CL2, where C is a constant that depends on
the peak-forwardness of the scattering coefficient. In cases where the diffusion coefficient is larger than Dx=2, we then need
to chose a finer discretization in the direction x that restores (46) or solve the PDE by implicit methods at the cost of an obvi-
ous loss in resolution.

As an implementation in the forward solver, Fig. 10 shows a small scatterer being hit by a beam with or without trans-
verse diffusion, as well as the single scattering part that is re-emitted from it. The mid-left picture shows the ballistic part,
whereas the mid-right and rightmost pictures show single scattering without and with blurring. The input beam loses en-
ergy as it hits the scatterer at the center of the image, and this energy is redistributed through space in the two pictures on
the right. We can observe a clear manifestation of the ray effect in the re-emission images, where the single scattering is
present everywhere in the domain in the presence of blurring, and is concentrated along rays otherwise. It should be noted
that the diffusion coefficient depends on the source location. The numerical tool to address ray effects therefore becomes
much less tractable when the source is not supported on a small number of points in the domain or at its boundary.

We conclude that in order to detect a localized scatterer, it is crucial to add transverse diffusion to the forward solver
since otherwise, any object located in one of these non-emission areas (see Fig. 10, mid-right) would not receive any energy
from the first scatterer. The solution we propose is not very practical since the diffusion depends on the scatterer position,
and this information may not be known in practice. A method that would be independent of the source position consists of
implementing angular (rather than spatial) diffusion. Such diffusion would be significantly more costly numerically and is
not considered here.
5. Inverse transport reconstructions

This section addresses the numerical simulation of the inverse transport problem presented in Section 2.2 using the
method described in Section 3. The albedo operator (7) involves the solution of forward transport equations and is thus dis-
cretized using the numerical method of Section 3. The inverse problem consists of reconstructing the discretized optical coef-
ficients from the discretized albedo operator.

The reconstruction of optical parameters from boundary measurements has been considered in many settings and re-
gimes of transport; see e.g. [4,14,29]. Most techniques are based on optimization procedure that minimize the error between
predicted and available measurements. Rather, we base here our inversion algorithm on the singular decomposition (7) and
the explicit formulas (9) and (10). A similar strategy was considered in [3]. The first formula allows us to estimate line inte-
grals of the total attenuation coefficient r. The reconstruction of r from its line integrals requires that we apply an inverse
Radon transform. Our practical choice for the discrete inverse Radon transform is a standard filtered back-projection function
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iradon as it is implemented in MatLab. The second formula (10) is then used to solve for the scattering coefficient by a
point-wise estimate. The inverse transport simulation is thus directly related to the exact, continuous, decomposition of
the albedo operator. It is therefore crucial that these terms be calculated accurately, which is done by the numerical tool
presented in the preceding sections.

In preparation for the numerical inversion, we recall the definition of the Radon Transform. For r 2 R and h 2 ð0;2pÞ, the
line of coordinates ðr; hÞ, is defined as the set
Lðr; hÞ :¼ rv? þ tv ; t 2 R
� �

; v ¼ ðcos h; sin hÞ: ð47Þ
For a sufficiently smooth function f defined in R2, we define its Radon Transform Rf on R� ð0;2pÞ as
Rf ðr; hÞ :¼
Z

Lðr;hÞ
f ¼

Z
R

f ðrv? þ tvÞ dt; r 2 R; h 2 ð0;2pÞ: ð48Þ
Note that the lines Lðr; hÞ and Lð�r;�hÞ are equal so that Rf ðr; hÞ ¼ Rf ð�r;�hÞ for ðr; hÞ 2 R� ð0;2pÞ.

5.1. Singular decomposition of the discrete albedo operator

In the rest of the section, we consider inverse transport problems of the following type. We assume that the scattering
coefficient k ¼ kðxÞ is independent of h and h0 and is smooth. The intrinsic attenuation coefficient raðxÞ is allowed to be sin-
gular (i.e., have jump discontinuities). This setting is adapted e.g. to optical tomography, where the scattering coefficient is
typically relatively smooth and the absorption coefficient provides a large contrast between healthy and un-healthy tissues.
Note that the total absorption rðxÞ ¼ raðxÞ þ rpðxÞ with rpðxÞ ¼ 2pkðxÞ is thus also possibly singular.

The ballistic part is calculated with some blurring corresponding to angular diffusion. We recall that the angular diffusion
model developed in Section 4 requires that we know the (localized) source location. For smooth, delocalized, scattering coef-
ficients, blurring is not very important and would be very expensive to compute. The single and multiple scattering compo-
nents are therefore treated without any blurring.

The measurements are therefore modeled as follows. Following the geometry described in Fig. 1, the set of incoming con-
ditions is parameterized by r 2 ½�1;1� for each h 2 ð0;2pÞ. The ballistic term is also parameterized by h 2 ð0;2pÞ and
r 2 ½�1;1� on Cþ;h. More precisely, let g be a singular incoming boundary condition supported at position rin 2 ½�1;1� and
of intensity Iin. Then in the presence of blurring caused by angular diffusion,A0g is supported on Cþ;hin

and in the Fermi pencil
beam approximation, is given by
A0gðr; hinÞ ¼
Iin

rd

ffiffiffiffiffiffiffi
2p
p e

�ðr�rinÞ
2

2r2
d e�Rrðrin ;hinÞ; r 2 ½�1;1�; ð49Þ
where the width rd is related to the diffusion coefficient by the relation r2
d ¼ 2RdFPBðrin; hinÞ.

As we mentioned already, the scattering terms are calculated numerically in the absence of any numerical blurring.
Though the source generated by the ballistic contribution indeed was blurred, it is still concentrated in the vicinity of the
line of support of the exact ballistic part. Under these hypotheses, the single scattering contribution is then approximately
given by
A1gðrout; houtÞ ¼
Iin

sinðhout � hinÞ
kðx; hin; houtÞErðxin; x; xoutÞ; ð50Þ
where x ¼ ðx; yÞ is the intersection of the lines Lðrin; hinÞ and Lðrout; houtÞ given by
x
y


 �
¼ 1

sinðhout � hinÞ
cos hout � cos hin

sin hout � sin hin


 �
�

rin

rout


 �
;

and Erðxin; x; xoutÞ encodes the exponential terms in (10) that account for the total attenuation along the broken line
½xin; x; xout�. It remains to choose hin and hout among the set of discrete ordinates Hd and rin and rout as one of the spatial grid
points to obtain a discretization of the ballistic and single scattering contributions of the measurements.

Let us for the moment assume that A0 and A1 have been measured. Then the reconstruction of the optical coefficients is
performed as follows.

(i) From knowledge of A0, we extract the termRrðrin; hinÞ for all ðrin; hinÞ in the discretized spaces for ½�1;1� � ð0;2pÞ. We
then apply the inverse Radon transform (MatLab’s function iradon) to the data to reconstruct the total attenuation
rðxÞ.

(ii) From knowledge of A1 and of rðxÞ reconstructed in the preceding step, we reconstruct kðx; hin; houtÞ :¼ kðxÞ on the
Cartesian grid.

Since kðxÞ is independent of the directions hin; hout, we can choose them freely. We consider here the case hin ¼ 0. We will
present reconstructions based on several values of hout, which show how the images degrade as hout converges to hin. The
attenuation coefficient Er needs to be estimated carefully. Several methods for doing so are described below.
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The next two paragraphs show how the total attenuation and scattering coefficients may be reconstructed from knowl-
edge of A0 and A1. The available measurements, however, consist of the full albedo operator A :¼ Aðrin; hin; rout; houtÞ, the va-
lue of the measurements taken at coordinates ðrout; houtÞ 2 Cþ;hout when sending a (delta or Gaussian) beam centered at
ðrin; hinÞ 2 C�;hin .

Since measurements A are well approximated by A0 when hin ¼ hout and byA1 when hin – hout, we may replace A0 and A1

above by the available measurements A and obtain a first reconstruction of the optical parameters. Once the parameters are
estimated, the transport solution (1) can be solved to estimate A�A0 and A�A1. Such residuals can then be removed from
the measured operator A to obtain better approximations for A0 and A1. These new approximations may then be used to
estimate the optical parameters more accurately, which in turn improve the estimate of the terms A�A0 and A�A1. This
generates an iterative algorithm that converges to the ‘‘true” optical parameters, at least in the absence of noise, provided
that the initial step offers a sufficiently accurate description of the optical parameters; see also [30] for a theoretical justi-
fication of the algorithm in dimension d ¼ 2. The iterative algorithm is described in Section 5.4 after we present the initial
step, which consists of reconstructing the optical parameters from knowledge of A0 and A1.

5.2. Reconstruction of the total attenuation map

This section considers the reconstruction of rðxÞ from knowledge of A0. For every discrete radius ri and ordinate hj, we
propagate a Dirac pulse of intensity Iin through the domain X starting from position ðri; hjÞ and collect the ballistic measure-
ments on Cþ;hj

after solving a forward transport problem.

5.2.1. Reconstructions without blurring
In the absence of noise, we have
1

1

1

1

A0ðri; hj; ri; hjÞ ¼ Iine�Rrðri ;hjÞ;
and the Radon transform of rðxÞ is obtained as
Rrðri; hjÞ ¼ � log
A0ðri; hj; ri; hjÞ

Iin

� �
: ð51Þ
The total attenuation coefficient is then reconstructed by application of an inverse Radon transform. Figs. 11 and 12 show
reconstructions for a smooth map and a discontinuous map, respectively. In each case, we have 128� 128-size images with
128 discrete ordinates.
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Fig. 11. Reconstruction of a smooth attenuation map. The relative (discrete) L2 error is approximately 1.1%.
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Fig. 12. Reconstruction of a discontinuous attenuation map. The relative (discrete) L2 error is on the order of 10%. Most of the error is supported in the
vicinity of the discontinuities.
5.2.2. Reconstructions with blurring
In the presence of blurring caused by angular diffusion as modeled in Section 4.1, the ballistic measurements are given by
A0ðri; hj; r; hjÞ �
Iin

rd

ffiffiffiffiffiffiffi
2p
p e

�ðr�riÞ
2

2r2
d e�Rrðri ;hjÞ; r 2 ½�1;1�; ð52Þ
where rd � 1 is the width of the Gaussian blurring. Several methods can then be devised to extract Rrðri; hjÞ from such a
term. We propose four similar formulas. The first two formulas are independent of the spatial discretization and are given
by
Rrðri; hjÞ ¼ � log
rd

ffiffiffiffiffiffiffi
2p
p

A0ðri; hj; ri; hjÞ
Iin

 !
; ðratio of the peaksÞ; ð53Þ

Rrðri; hjÞ ¼ � log
R 1
�1A0ðri; hj; r; hjÞ dr

Iin

 !
; ðratio of the energiesÞ: ð54Þ
Formula (53) measures the outgoing density at the peak of the Gaussian blurring caused by angular diffusion. It requires
prior knowledge of the smoothing coefficient rd. Formula (54) is based on the fact that the angular diffusion preserves par-
ticles. When ½�1;1� is replaced by R, the above formula is exact at the continuous level. Note that it does not require prior
knowledge of rd and is therefore the only choice in a situation where the blurring caused by angular diffusion is not known.
In our simulations, reconstructions based on (54) appeared to be more robust than the ones based on (53). This is because
when blurring is small, rays that are sent close to the edges of the interval ½�1;1� do not sufficiently diffuse to resemble
Gaussian functions when they exit the domain. Formula (53) is then inaccurate. Formula (54) is not affected by such an ef-
fect. Even when the diffusion scheme is not very accurate, it still preserves the number of particles. This artifact can be less-
ened by having the support of the optical coefficients strictly smaller than the computational domain so that the quantities
of interest are not significantly affected by this artifact.

In practice, we also expect (54) to be more useful as it does not assume any specific structure for the blurring function and
does not require exact knowledge of the exiting point ri as (53) does. Both formulas assume that the angular diffusion is
accurately captured by the numerical scheme, which implies that rd is large compared to the spatial grid size. This constraint
is very difficult to meet in practice.

Two similar formulas are useful when the spatial discretization occurs at the same scale as the angular diffusion, for in-
stance when the variance rd corresponds to a few grid points. Then the blurring caused by the noise is not well approxi-
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mated by the continuous formula (52). To account for the numerical artifacts, we can calculate the blurring that would occur
in the absence of absorption, i.e., calculate A0;d :¼ A0 with r � 0, and calibrate the albedo operator accordingly. This yields
the formulas
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R 1
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 !
; ðratio of the energiesÞ: ð56Þ
Such formulas require that the angular diffusion coefficient be known in order to calculate A0;d. They are useful in the sense

that the ratios A0ðri ;hj ;ri ;hjÞ
A0;dðri ;hj ;ri ;hjÞ

depend very little on the discretization used in the numerical simulation. As such, they provide a

good tool to understand the effect of given, known, angular diffusion on the physical measurements used in the reconstruc-
tions. Which formula is best thus depends on the practical situation of interest. The numerical tool developed in Section 3
allows for sufficient flexibility to handle several practically relevant noise models in the ballistic measurements. A numerical
application of the formulas involving blurring is presented in Fig. 13.

5.3. Reconstruction of the scattering coefficient

We now address the reconstruction of kðx; h0; hÞ from knowledge of A1 and rðxÞ. This requires that we estimate
Erðxin; x; xoutÞ accurately. Assume that hin and hout are fixed and define a ¼ hout � hin. Let also
ri ¼ �1þ 2i� 1
n

; 1 6 i 6 n: ð57Þ
We run n forward solvers with incoming boundary conditions on C�;hin located at x�i :¼ �v in þ riv?in for i ¼ 1; . . . ;n (we recall
that v in ¼ ðcos hin; sin hinÞ and vout is defined equivalently). We then reconstruct kð�; hin; houtÞ at the points fxijgn

j¼1 defined by
xij ¼ �rjv in þ riv?in; 1 6 j 6 n:
These points project on to the boundary Cþ;hout at the points
xþij :¼ vout þ rijv?out; where rij :¼ �rj sinaþ ri cos a; 1 6 j 6 n:
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For 1 6 j 6 n, we find that
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A1ðri; hin; rij; houtÞ ¼
Iin

sina
Er x�i ; xij; xþij
� �

kðxij; hin; houtÞ: ð58Þ
Here, Er x�i ; xij; xþij
� �

is the inverse of the exponential of the broken line integral of r along x�i ; xij; xþij
h i

. This broken line inte-
gral is estimated numerically by a standard quadrature rule using the absorption map rðxÞ constructed from A0. This pro-
vides a first formula for k given by
kðxij; hin; houtÞ ¼ sin a
A1ðri; hin; rij; houtÞ
IinEr x�i ; xij; xþij

� � : ð59Þ
The numerical integration of Er may be avoided again by a calibration technique. Let us define the single scattering con-
tribution obtained with a scattering coefficient k � 1:
A1;k�1ðri; hin; rij; houtÞ ¼
Iin

sina
Er x�i ; xij; xþij
� �

:

Then, a natural formula for the reconstruction of k that is quite insensitive to discretization effects is given by:
kðxij; hin; houtÞ ¼
A1ðri; hin; rij; houtÞ
A1;k�1ðri; hin; rij; houtÞ

: ð60Þ
In our numerical simulations, we saw fairly minor differences between the reconstructions because our scattering coefficient
is chosen to be smooth. In particular, the error in the L2 norm is relatively insensitive to the method that we use. Still, the
second formula tends to produce smoother reconstructions. Fig. 14 illustrates these statements.

5.3.1. Impact of the angle a ¼ hout � hin

In our numerical simulations, the physical size of the support of the ballistic part is equal to 2 ¼j ½�1;1� j. The cone of lines
emitted with direction hout has a trace on Cþ;hout with support of size bounded by 2 sin a; see Fig. 15. The compression is there-
fore quite severe when a is close to 0. The information on k encoded on n pixels along the ballistic part is therefore shrunk to
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information encoded over n sin a pixels at best. High frequencies in k are therefore irretrievably lost and even low frequen-
cies component are lost when a tends to 0 until only the spatial average of k is available and (60) fails to adequately recon-
struct the scattering coefficient. The resolution clearly improves when n increases at a fixed value of a since we can roughly
reconstruct n sin a Fourier modes of k along the segment t # xin þ tv in. But loss in resolution is unavoidable when a is small.
The most favorable situation is obviously sin a ¼ 1, which should clearly be chosen to reconstruct k ¼ kðxÞ independent of
the angular variables.

Since hout – hin, the ballistic part needs to be rotated first in order for hout to be aligned with one of the grid axes. Such a
rotation may induce strong oscillations of the source term in the transport equation and generate oscillations on the single
scattering measurements. We have observed that such effects were amplified when a was small. A solution to such numer-
ical instabilities is to send regularized (Gaussian beams) on C� or to have angular diffusion in order to regularize the ballistic
term. Fig. 16 shows how the reconstruction degrades when a decreases.
5.3.2. Different scattering scenarios
In the most general case, when k � kðx; hin; houtÞ depends non trivially on hin and hout, the above formulas (59) and (60) can

hardly be improved. In many practical settings, k � kðx;v in � voutÞ depends only on the difference of the two angles hin and
hout. This situation arises when scattering is isotropic, i.e., when scattering is independent of rotations of the configuration
domain. Such assumptions are sometimes violated, for instance in absorption and scattering through canopy, but are valid
in many practical settings of medical and geophysical imaging. The reconstructions in (59) and (60) may then be improved
by averaging over angles, e.g.
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Fig. 17
hin; hout,
are rela
kðxij; hin; houtÞ ¼
Z 2p

0

A1ðri; hin þ /; rij; hout þ /Þ
A1;k�1ðri; hin þ /; rij; hout þ /Þ

d/
2p

: ð61Þ
Here, ri and rij depend implicitly on / by replacing hin and hout by hin þ / and hout þ /, respectively. Averaging over only two
directions already yield some reasonable gains in the reconstructions as may be seen in Fig. 17. When k ¼ kðxÞ is indepen-
dent of angles, then the choice a ¼ p

2 and hin ¼ 0 is optimal.
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5.4. Iterative reconstruction of the optical parameters

We now return to the iterative algorithm briefly mentioned at the end of Section 5.1. The previous sections show how
rðxÞ and kðx; h0; hÞ may be reconstructed from knowledge of A0 and A1. It remains to calculate the latter terms from knowl-
edge of the full operator A. This may be done iteratively for sufficiently small values of k in two space dimensions and for
sufficiently small noise as is e.g. justified in [11,30]. The reason why this may be done is that A�A0 and A�A1 can be esti-
mated numerically by solving a transport equation once rðxÞ and kðx; h0; hÞ are known approximately. Knowledge of A and of
A�Ak obviously gives us knowledge of Ak for k ¼ 0;1. More formally, the iterative algorithm is structured as follows.

Let us denote the full measurement data by
1

1

Fig. 18.
after co
coeffici
D :¼ A0ðrÞ þ A1ðr; kÞ þ A2ðr; kÞ:
Let us further denote formally byA�1
0 any of the reconstruction formulas that give us an approximation of r from the ballistic

measurements A0ðrÞ (this involves one of the formulas (53)–(55) or (56), followed by an Inverse Radon Transform), and by
A�1;r

1 , any of the reconstruction formulas that reconstruct k from the single scattering measurements A1ðr; kÞ. Then we can
write the following
r � A�1
0 A0ðrÞ ¼ A�1

0 ðD�A1ðr; kÞ � A2ðr; kÞÞ:
k � A�1;r

1 A1ðr; kÞ ¼ A�1;r
1 ðD�A0ðrÞ � A2ðr; kÞÞ:
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Iterated scattering reconstruction. Sub-plots (a), (b) and (c) show the exact parameters. Sub-plots (d) and (e) show the reconstructions of ra and rp

nvergence of the iterative scheme, while sub-plot (f) shows the reconstruction of the total attenuation. The last row displays point-wise errors for all
ents ra;rp and r.
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Assuming that the operators in both right-hand sides are contractions, then iterating over these operators with good initial
guesses should converge to improved reconstructions of both optical parameters. The iterative scheme reads as follows:
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Fig. 19.
shows t
the rec
r0 ¼ A�1
0 D; k0 ¼ A�1;r0

1 D;

rlþ1 ¼ A�1
0 ðD�A1ðrlÞ � A2ðrl; klÞÞ;

klþ1 ¼ A�1;rlþ1
1 ðD�A0ðrlÞ � A2ðrl; klÞÞ:

ð62Þ
Theoretical results show that the above operators are indeed contractions at the continuous level (i.e., before spatial and
angular discretizations) and in the absence of noise (i.e., no angular diffusion) independent of k in dimension d P 3 and
for small k in dimension d ¼ 2. It is highly likely though not proved rigorously mathematically that the algorithm is also
a contraction when the angular diffusion is small (see e.g. [11]) and the grid size h ¼ 2

n and angular size d are sufficiently
small.

In the numerical simulations presented below, we assume that the scattering kernel is a function of position only (i.e.,
kðx; h; h0Þ ¼ kðxÞ) and we define the quantity
rpðxÞ :¼
Z

S1
kðxÞdh ¼ 2pkðxÞ:
Thus, rp is the scattering contribution to the total attenuation with rðxÞ ¼ raðxÞ þ rpðxÞ, where ra is the intrinsic absorption.
We are interested in a situation where the intrinsic attenuation may have jump discontinuities and/or localized inclusions
and the scattering coefficient is smoother, see Fig. 18(a)–(c). In such a setting and with relatively small angular blurring, the
single and multiple scattering contributions hardly affect the measurements of A0. In other words, on the support of A0, the
remainder A�A0 is rather small. As a consequence, our strategy to recover the optical parameters raðxÞ and kðxÞ, or equiv-
alently raðxÞ and rpðxÞ, is as follows: we first compute the total attenuation rðxÞ by applying A�1

0 to the full measurement
data D. We then reconstruct kðxÞ using the iterative scheme that can be deduced from (62). At each iteration, we estimate the
terms rp and ra as
rp;l ¼ 2pkl; ra;l ¼ r� rp;l; l ¼ 0; . . . ;Niter:
The iterative scheme thus reads:
r ¼ A�1
0 D; k0 ¼ A�1;r

1 D;

klþ1 ¼ A�1;r
1 ðD�A0ðrÞ � A2ðr; klÞÞ ¼ k0 �A�1;r

1 ðA0ðrÞ þ A2ðr; klÞÞ:
ð63Þ
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Remarks on the convergence. Plot (a) shows a cross section of iterations of the scattering coefficient using the initial oscillatory scheme. Plot (b)
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The iterative scheme converges rather slowly and oscillates about its limit. Since measurements include multiple scatter-
ing and the first reconstruction k0 of the scattering map is based on single scattering, the latter is overestimated. The forward
map then also overestimates the influence of multiple scattering in the data and thus removes ‘‘too much” multiple scatter-
ing for the next reconstruction k1 of the scattering map, which is therefore smaller than the true map, and so on. Even iter-
ates of kl therefore overestimate the true scattering map while odd iterates of kl underestimate it. More formally, the equality
klþ1 � kl ¼ �A�1;r
1 ðA2ðr; klÞ � A2ðr; kl�1ÞÞ;
shows the change of sign of klþ1 � kl at each iteration since A2 is monotonically increasing in its arguments. To reduce these
oscillations and accelerate the convergence, we need a scheme that better utilizes previous iterations, for instance the fol-
lowing relaxation scheme
klþ1 ¼ b A�1;r
1 D�A�1;r

1 ðA0ðrÞ þ A2ðr; klÞÞ
� �

þ ð1� bÞkl; ð64Þ
for some b 2 ð0;1Þ. Numerical results with the value b ¼ 1
2 show that this scheme indeed converges quite rapidly; compare

Fig. 19, plots (a) and (b).

5.4.1. Numerical reconstruction in the absence of angular blurring
In all simulations, we have n ¼ Nd ¼ 128. The reconstruction settings for the scattering coefficient are: hin ¼ d

2 (i.e., the
incoming direction is very close to ex; this maximizes the numerical effects of the rotation), a ¼ hout � hin ¼ p

2, inputs are Dirac
pulses. In a first numerical experiment, we assume no angular diffusion. The forward simulation is obtained by computing
scattering terms up to order five.

As in Section 5.2, the total attenuation is reconstructed using an inverse Radon Transform (IRT). The error is mainly local-
ized at the discontinuities (see Fig. 18(d)). The modified iterative scheme (64) converges after 3–4 iterations and we achieve
a relative error of 2.2% on rp and 10.6% on ra (see point-wise errors on Fig. 18(g) and (h)). The error on the reconstruction of
the intrinsic attenuation map is therefore similar to the setting obtained earlier in the absence of scattering.

The reconstruction contains two main sources of error: the error caused by the Inverse Radon Transform (IRT), and the
error caused by the non-ballistic part of the measurements (which were neglected at first). In a discrete setting, the IRT does
not recover singularities well and creates radial artifacts caused by the angular discretization. Thus, A�1

0 A0ðrÞ � r presents
peaks close to the singularities of r as well as radial noise. Since the iterative scheme uses A�1

0 A0ðrÞ and scattering is smooth
with A�1

0 A0ðrpÞ � rp a good approximation, the iterations on the intrinsic absorption should provide a much better approx-
imation for A�1

0 A0ðraÞ than for ra. We indeed observe that the relative L2-error of ra;5 with respect to A�1
0 A0ðraÞ is 1.4%.

Fig. 19(f) shows that the errors are no longer as localized near the singularities unlike Fig. 18(g), where we display
jra;5 � raj. We do notice some of the scattering coefficient in that error plot, in the same way that we notice some intrinsic
absorption in the scattering reconstruction error in Fig. 18(h). This cross-over in the reconstructions is probably unavoidable.
However, it is significantly smaller than the error we expect when we apply the IRT. In this sense, the iterative reconstruction
algorithm successfully separates the intrinsic attenuation and scattering components of the total attenuation map.

5.4.2. Numerical reconstruction with angular blurring
We now consider the framework where the ballistic part is blurred by some Fermi pencil beam transverse diffusion with a

constant coefficient d ¼ 2:510�4 in formula (38). Fig. 21(a) displays how the beam widens as it passes through the center of the
domain. We still compute full measurements using five scattering terms in the forward solver. We then reconstruct the total
absorption coefficient r by using formula (56). In other words, we assume that the physical measurements are given to us byR 1

�1
A0ðri ;hj ;r;hjÞ drR 1

�1
A0;dðri ;hj ;r;hjÞ dr

, which corresponds to a faithful approximation of the physical blurred measurements that depends very little on

the discretization used in the simulations. The reconstruction of rp and ra is performed using the modified scheme (64).
The results are gathered in Fig. 20. As in the absence of angular blurring, we observe that the scattering coefficient is

reconstructed accurately. The smoothness of the latter coefficient makes the reconstructions quite robust with respect to
angular diffusion. Note also that the coefficient Er appearing in the reconstruction of the scattering coefficient is estimated
more accurately than r itself because it involves (broken) line integrals of r, which are more robust with respect to noise
than point-wise estimates.

Errors on r ¼ ra þ rp are therefore inherited by the intrinsic attenuation coefficient ra. The reconstructed coefficient ra

unsurprisingly has smoother edges than in the case without diffusion. Hence the larger error at the edges, see Fig. 18(g) and
Fig. 20(d). As in the case without diffusion, we notice that ra actually converges to the function rk¼0

a � A�1
0 A0ðraÞ, which is

what we would reconstruct from ballistic measurements with angular diffusion and no scattering; see Fig. 21, where we ob-
serve a relative L2 error of 1.4%.

To conclude this section, we would like to stress that the iterative algorithm accurately separates the scattering and
intrinsic attenuation components of the total attenuation coefficient also in the presence of small angular diffusion. Whether
we pick a reconstruction formula that requires knowledge of noise a priori or not, a smooth scattering coefficient is always
reconstructed well, whereas the intrinsic attenuation inherits the imperfections of the reconstruction formula for the total
attenuation, may these imperfections come from the inverse Radon Transform or from the inaccurate estimation of the
numerical noise. Finally, let us insist on the fact that even in the setting where noise is known, the above results show
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Fig. 20. Results of reconstructions. The exact coefficients in Fig. 18, first row. Relative L2 errors drop from 39% to 2.2% in three iterations for rp, and from
28% to 11% for ra.
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how the discontinuities are blurred in the reconstructions, and irretrievably so in the absence of prior knowledge about the
objects we wish to reconstruct.

5.4.3. Summary of algorithmic complexity and parallelizability
Let us conclude this section by a summary of the various computational costs of the forward and inverse transport codes.

We recall the notation; n: the size of the reconstructed (square) image; Nd: number of directions in the discretization of
S1; Nscat: number of scattering terms that we compute when solving a forward transport problem; Niter: number of iterations
in the iterative reconstruction scheme (62); Navg: number of scattering reconstructions over which we average in order to get
better accuracy.

The complexities of the numerical algorithms presented in this paper are summarized as follows:


 a single propagation of ray along the grid requires Oðn2Þ operations and an image rotation, Oðn2 log nÞ operations.

 solving a forward problem for one given input requires one ballistic propagation and NdNscat scattering propagations, so it

requires O ð1þ NscatNdÞn2 log n
� 	

operations. Creating full measurements requires solving a forward problem for each
input pulse at position ðri; hjÞ, hence measurements have a computational cost of O nNdð1þ NscatNdÞn2 log n

� 	
.


 In the most general case of scattering, all iterative schemes require the computation of full measurements at each iter-
ation, so the iterative reconstruction will be of the orderO NiternNdð1þ NscatNdÞn2 log n

� 	
. When the scattering is only func-

tion of position kðxÞ, it can be reconstructed from measurements with only one input direction, which reduces the latter
cost by a factor Nd.
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In the presence of parallel architectures and the availability of p� Nd processors, 1 6 p 6 n� Nd, the total computational
time may be reduced by a factor close to p� Nd. Creating the measurement operator requires that we run n� Nd indepen-
dent forward solvers. For each of these solvers, one step of the iterated source method requires Nd independent solutions of
the free transport equation. Hence the strategy with p� Nd processors is to create p groups of Nd processors. Each group can
then run a forward solver with complexity O ð1þ NscatÞn2 log n

� 	
(instead of O ð1þ NscatNdÞn2 log n

� 	
on a single processor).

We then create the full measurements by splitting the n� Nd-long loop over the p groups of processors. Neglecting commu-
nications, which should be minimal in practice for sufficiently large spatial domains, we obtain a gain of time p� Nd pro-
vided the latter number of processors is available.

6. Conclusions

This paper presents a numerical methodology to solve the inverse transport problem, which consists of reconstructing the
optical parameters in a transport equation from full knowledge of the albedo operator. The main message that can be drawn
from the mathematical analysis of the inverse transport problem is that reconstructions of the optical parameters are stable
when the singular structure of the albedo operator can be used. This requires that the singularities of the forward transport
operator be estimated accurately, a task that is difficult to do on a Cartesian grid because of the hyperbolic structure of the
transport equation.

The method based on slanting or fully rotating the computational domain to solve the free transport equation allows one
to devise a Cartesian-friendly method that accurately captures the ballistic and single scattering components of the transport
solution. The equation after rotation is sufficiently simple that various physical blurring effects such as those caused by
angular diffusion can be accounted for. The numerical tool we have presented then allows one to understand what can
and cannot be reconstructed in an object of interest based on various measurement configurations. We have presented
numerical reconstructions based on full knowledge of the ballistic part and full knowledge of scattering for the angle
hout � hin ¼ p

2. In this setting, the separation of a smooth scattering coefficient from a more singular absorption coefficient,
which is an interesting configuration in practice, was shown to be performed accurately.

The methodology easily generalizes to the three dimensional transport equation, where polarization effects such as those
described in [13] can also be included. The computational cost of the method however becomes quite high. The price to pay
for the rotations is unavoidable if some spectral accuracy in the rotations is to be maintained. More local interpolants can
also be developed to account for the rotations and this is being considered elsewhere. The setting based on rotations is how-
ever fairly robust as it allows one to account for several physical blurring mechanisms relatively painlessly. The total com-
putational cost of the method is however an issue. It can be reduced significantly by carefully analyzing the singularities of
the transport solution. For instance, contributions for high orders of scattering are much smoother than the ballistic contri-
bution. They can therefore be captured by spatial and angular grids that are much coarser than the grid used for the ballistic
part. Multi-grid and Sparse techniques (see e.g. [32]) might then be used to reduce the computational cost of the method,
which is arguably quite high.
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